Solar Energy

Solar energy, radiant light and heat from the Sun, has been harnessed by humans since ancient times using a range of ever-evolving technologies. Solar radiation, along with secondary solar-powered resources such as wind and wave power, hydroelectricity and biomass, account for most of the available renewable energy on Earth. Only a minuscule fraction of the available solar energy is used.

Solar powered electrical generation relies on heat engines and photovoltaics. Solar energy's uses are limited only by human ingenuity. A partial list of solar applications includes space heating and cooling through solar architecture, potable water via distillation and disinfection, daylighting, solar hot water, solar cooking, and high temperature process heat for industrial purposes.

Solar technologies are broadly characterized as either passive solar or active solar depending on the way they capture, convert and distribute solar energy. Active solar techniques include the use of photovoltaic panels and solar thermal collectors to harness the energy. Passive solar techniques include orienting a building to the Sun, selecting materials with favorable thermal mass or light dispersing properties, and designing spaces that naturally circulate air.
Contents




Energy from the Sun

About half the incoming solar energy reaches the Earth's surface.

The Earth receives 174 petawatts (PW) of incoming solar radiation (insolation) at the upper atmosphere. Approximately 30% is reflected back to space while the rest is absorbed by clouds, oceans and land masses. The spectrum of solar light at the Earth's surface is mostly spread across the visible and near-infrared ranges with a small part in the near-ultraviolet.

Earth's land surface, oceans and atmosphere absorb solar radiation, and this raises their temperature. Warm air containing evaporated water from the oceans rises, causing atmospheric circulation or convection. When the air reaches a high altitude, where the temperature is low, water vapor condenses into clouds, which rain onto the Earth's surface, completing the water cycle. The latent heat of water condensation amplifies convection, producing atmospheric phenomena such as wind, cyclones and anti-cyclones. Sunlight absorbed by the oceans and land masses keeps the surface at an average temperature of 14 °C.[4] By photosynthesis green plants convert solar energy into chemical energy, which produces food, wood and the biomass from which fossil fuels are derived.
Yearly Solar fluxes & Human Energy Consumption
Solar 3,850,000 EJ[6]
Wind 2,250 EJ[7]
Biomass 3,000 EJ[8]
Primary energy use (2005) 487 EJ[9]
Electricity (2005) 56.7 EJ[10]

The total solar energy absorbed by Earth's atmosphere, oceans and land masses is approximately 3,850,000 exajoules (EJ) per year. In 2002, this was more energy in one hour than the world used in one year. Photosynthesis captures approximately 3,000 EJ per year in biomass. The amount of solar energy reaching the surface of the planet is so vast that in one year it is about twice as much as will ever be obtained from all of the Earth's non-renewable resources of coal, oil, natural gas, and mined uranium combined.

From the table of resources it would appear that solar, wind or biomass would be sufficient to supply all of our energy needs.

Tags: energy, health, naturism, nudity, solar

Views: 12

Caribbean Links

GBurkeImages on Instagram

GrahamBurke, The Blog

CaribShout on Periscope

@CaribShout

94FM Pop-up Player

RJR News

Birthdays

Caribbean on Twitter

Badge

Loading…

Events

December 2018
SMTWTFS
1
2345678
9101112131415
16171819202122
23242526272829
3031

© 2018   Created by GrahamBurke Holdings LLC   Powered by

Badges  |  Report an Issue  |  Terms of Service